

世界初のミューオン加速の実現と ミューオン線型加速器の開発

¹KEK/J-PARC M. Otani

²SNU, ³JAEA, ⁴Nagoya Univ., ⁵Ibaraki Univ., ⁶BINP, ⁷Kyusyu Univ., ⁸Univ. of Tokyo, ⁹TIT
S. Bae², H. Choi², S. Choi², E. Cicek¹, H. Ego¹, K. Futatsukawa¹,
K. Hasegawa^{3*}, N. Hayashizaki⁹, K. Inami⁴, T. Iijima⁴, H. Iinuma⁵,
N. Kawamura¹, Y. Kondo³, B. Kim², H.S. Ko², T. Mibe¹, Y. Miyake¹,
T. Morishita², Y. Nakazawa⁵, G.P. Razuvaev⁶, N. Saito¹, K.Shimomura¹,
Y. Sue⁴, K. Sumi⁴, K. Suzuki⁴, T. Takayanagi³, Y. Takeuchi⁷,
J. Tojo⁷, E. Won², T. Yamazaki⁴, H. Yasuda^{8**}, M. Yotsuzuka⁴

2021年11月9日 京都大学高エネルギー研究室 セミナー

自己紹介

0

2009/3 京大高エネ修士 「T2K長基線ニュートリノ振動実験 ニュートリノビームモニター INGRIDの製作と性能評価」

- 2012/3 京大高エネ博士 「Measurement of Neutrino Oscillation in the T2K Experiment」
- 2012/4- 東北大ニュートリノ科学センタ 教育研究支援者
- 2013/11 KEK素核研博士研究員 - J-PARC g-2/EDM実験
- 2017/4- KEK加速器助教
- 2021/10 AAPPS-APCTP C.N. Yang Award [For his development of the muon linac in realizing the muon acceleration for the first time in the world]

]容

- 1. 世界初のミューオン加速の実現
 - ミューオンの生成・冷却・加速
- 2. ミューオン線型加速器の開発
 - J-PARCミューオンg-2/EDM実験
- 3. まとめ

ミューオン

-

MAY 15, 1937

Note on the Nature of Cosmic-Ray Particles

SETH H. NEDDERMEYER AND CARL D. ANDERSON California Institute of Technology, Pasadena, California (Received March 30, 1937)

<u>ミューオンの生成</u>

- μ^{\pm} is generated through the π^{\pm} -decay
- π is generated by proton-nucleon reactions in the target.

<u>decay muon</u>

- Wide momentum distribution up to ~P_p
- polarization < 100%

<u>(sub-)surface muon</u>

- semi-monochromatic
 - T~4MeV, P~30MeV/c
 - muon range~0.1g/cm²
- polarization ~ 100%
- only μ^+

世界のミューオン施設

🖓 MuSIC

Nucl. Eng. Technol. 53 (2021) 2909

RIUMF

to be launched?

CSNS 中国 裁裂 中 舌 源 China Spallation Neutron Source

Quantum Beam Sci. 2 (2018) 23 to be launched?

ミューオンの利用

基礎物理 (*μ*→eγ探索@MEG, 54 55 *E*_{e⁺} (MeV) -2

ICEPP HP, Eur. Phys. J. C (2016) 76:434

cos⊖

物質科学 μSR(ミュオンスピン回転法)

非破壊元素分析

• エミッタンス~位相空間を占める面積が非常に大きい

ミューオン: ~1,000 π mm mrad (cf. J-PARC linac >1 π mm mrad)

 $9_{/38}$

近年、イオン化冷却 (減速のみ)を実証
 [Nature 578, 53–59 (2020)]

10/38

• <u>~1 km</u>並べて ε_{t} ~1/100, ε_{l} ~1/10

ミューオンの冷却 2/3

Moderator@PSI LEM

van der Waals solids, no interaction less than ~10 eV

- 希ガスレイヤー (~10eV以下の 相互作用が制限)で~10 eVまで減速、 出射/入射 μ⁺ ~10⁻⁴
- 既に物性実験に利用

<u>MuCool</u>

- 密度勾配を付けたガス中での E×Bドリフトで~€♥まで減速、 出射/入射µ+~10⁻³(未実測)
- 原理を実証 (ビーム取り出し&実験利用は未だ)

Introductory Muon Science, K. Nagamine, Fig. 3.1

<u>負ミューオニウム生成</u>

- 様々なミューオン冷却手法が開発されてきた一方で、加速は未実証だった。
- タイムリーにミューオン加速を実証するには、もっとシンプルで(安い)手法が必須だった
 →負ミューオニウム生成 [PRA 35, 3172 (1987)]

2015_{May} Assembling BL PARC

2016_{Feb.}

2017_{Mar.} Profile Measurement

First Muon Acceleration

History [参考文献: 高エネニュースVol.37 No.1]

Radio-Frequency Quadrupole linac:RFQ

<u>加速試験セットアップ</u>

ミュオン加速の実証

RFQ

90 keV

1000

4極+偏向電磁石

UV-generated H⁻ ion penetrating μ^+ UV fiber measured profile >100mV 400 Expedted (data normalized) 200 H. -100 10 А electric-lens X (mm) 500 time of flight [ns]

MCP

First muon acceleration in the world

ミューオン異常磁気能率(g-2)、
 ニュートリノファクトリー、
 コライダーetc.

M. Otani, T. Shiba, H. Miyadera, IPAC2021 THXC05

- 2021年4月にFNALがミュオンg-2測定結果を発表。
 10年以上前のBNLの測定結果を再現→標準模型とのズレは4.2 σ
- FNALとBNLは同手法による測定→異なる手法での検証が必須

<u>ミュオンg-2精密測定実験J-PARC E34</u>

冷却・加速によって得られる 全く新しいミュオンビーム

ミュオン冷却 (3 MeV→25 meV)

面ミューオン

Karder of the second

ピーム

全く新しい手法による独立な高精度(0.45 → 0.1ppm)測定 24/38

(→212 MeV)

25/38

- ・実験の詳細設計が完了 [K. Abe et al., PTEP2019, 053C02]
- ・ J-PARC PACおよびKEK-IMSS PACで実験採択 (Stage-II)
- KEK PIP2016において最優先の一つ、KEK SAC2019はPIP2019をサポート。
 - 1. (既に予算化)J-PARC upgrade for Hyper-K
 - 2. (既に予算化) HL-LHC
 - 3. J-PARC E34
 - 4. J-PARC HD拡張
- KEKから概算要求を開始(KEK→文科省→財務省)
- 科研費特別推進研究が採択(2020~2025,代表:三部)
 - 検出器や入射ラインを製作、ミュオン加速器上流部を製作

Meeting on J-PARC Muon g-2/EDM

徐々に建設フェーズに移行。いよいよ予算化が期待。

buncher exit	Energy [MeV]	212
buncher 1 st cell	Intensity [/s]	106
•.• proton KEK gun KEK gun	Repetition [Hz]	25
0.0 SDTL	Pulse length [nsec]	10
0.2 FQ J-PARC IS	Normalized ε _t [π mm mrad]	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Δp [%]	0.1

前例のないミュオン線型加速

0.4 תוות 10	• X • Y		lnit.	RFQ	IH	DA W	DLS
0.2	0.2 – DAW CCL DLS	Decay survival [%]	83	81	98	96	99
$ \begin{array}{c c} $	Transmission [%]	87	95	99.9	99.5	99.9	

実験で要求されるエミッタンス・強度を達成

バンチ幅測定 2019

ミュオン用バンチャ空洞 NIMA946 (2019) 162693

 μ^+

加速ミュオンの パンチ幅測定に成功 Phys. Rev. AB 23 (2020) 022804

高時間分解能ビームモニタ

- •2段目加速器IH-DTLの~1/3ハイパワーモデルを製作。 低電力試験で性能評価完了、今年度前半に大電力試験を実施予定。
- 3段目加速器DAW-CCLのコールドモデルを製作。 低電力試験で性能評価完了、ハイパワー実機設計に着手。

年度内に製作完了。次年度以降に低電力・大電力試験。

32/38

年度内に1stタンクの全セルを製作し、低電力試験実施

DLS詳細設計

- 電子(β=1)と異なる設計(β=0.7→0.94)が必要。
- 製作に向けた詳細設計を行っている。

ミュオン用(β≠1)設計手法を確立、 来年度に実機スケール空洞を試作予定

まとめ

- ・ 負ミューオニウムイオンによる冷却とRFQによって
 世界初のミューオン加速を実証
- 本技術に立脚して、静止したミューオンをほぼ光速度まで 加速するミューオン線型加速器を設計、実現に着手。

• ついに予算化が期待。2025年にデータ収集開始を目指す。

本研究は日本学術振興会科学研究費JP25800164、JP15H03666、JP15H05742、JP16H03987、 JP16J07784、JP18H03707、JP18J22129、JP18H05226、JP19J21763、JP20J21440、 JP20H05625、JP21K18630、JP21H05088、JP21H05084の助成を受けております。

グループ体制

若手が大活躍

論文			The state of the		1. 68	
須江 祐貴、	名大D1、M1 Phys. Rev.	AB 23 (2020) 022804	中沢 雄河	茨城大D2	JPS Conf. Proc. , 33 (2	2021) 011128
四塚 麻衣	「 支城士M2 」 Phys Co	of Sor 1350 (2010) 012054	竹内 佑甫	九大D3	JPS Conf. Pr <mark>oc.</mark> , 33 (2	2021) 011129
中沢 雄河	茨城大M2 NIM A937((2019) 164-167	四塚 麻衣	名大D1	JPS Conf. Proc. , 33 (2	2021) 011140
山市				- 7	601	3
			禾十〇尚十個	禾改主尚 (主約		
四场 MAX	占人DI	口平初理子云2021年秋	学人云子生馁	穷宄衣貞(系机	业丁夫缺/	
竹内佑甫	九大D3	日本加速器学会第18回	年会賞(ポス)	ター)		
中沢 雄河	茨城大D2	flavor physics worksho	op 2021 Best	Talk賞	And a	
四塚 麻衣	名大M2 [当時]	日本物理学会第76回年	会 学生優秀発	終表賞 (ビーム特	勿理)	
四塚 麻衣	名大M2	日本物理学会2020年秋	季大会学生優	秀発表賞 (素料	立子実験)	
安田 浩昌	東大D3	日本加速器学会第17回	年会賞 (ポス:	ター)		
中沢 雄河	茨城大M2	4th International Symp University, poster awa	oosium of Qu rd	antum Beam S	Science at Ibaraki	
中沢 雄河	茨城大M2	2019年度ビーム物理研	究会 若手発表	夏		
安田 浩昌	東大D2	第6回KEKスチューデン	、ト・デイ機構	毒長賞 📃		
北村 遼	東大D3	国際線形加速器学会LIN	NAC2018 Stu	ident post <mark>er a</mark>	ward (1st prize)	
須江 祐貴	名大M2	日本加速器学会第15回	年会賞(ポス)	ター)		
安田 浩昌	東大D2	第6回KEKスチューデン	・ト・デイ機構	毒長賞		
安田 浩昌	東大D1	日本物理学会第74回年	会 学生優秀発	き表賞 (ビーム牧	勿理)	
須江 祐貴	名大M2	日本物理学会第74回年	会 学生優秀発	き表賞 (ビーム物	勿理)	
		若手大学院	追が大流	躍		37/

